منابع مشابه
A fuzzy random forest
When individual classifiers are combined appropriately, a statistically significant increase in classification accuracy is usually obtained. Multiple classifier systems are the result of combining several individual classifiers. Following Breiman’s methodology, in this paper a multiple classifier system based on a “forest” of fuzzy decision trees, i.e., a Fuzzy Random Forest, is proposed. This ...
متن کاملWeighted Decisions in a Fuzzy Random Forest
A multi-classifier system obtained by combining several individual classifiers usually exhibits a better performance (precision) than any of the original classifiers. In this work we use a multi-classifier based on a forest of randomly generated fuzzy decision trees (Fuzzy Random Forest), and we propose a new method to combine their decisions to obtain the final decision of the forest. The prop...
متن کاملDiagnosis of Diabetes Using a Random Forest Algorithm
Background: Diabetes is the fourth leading cause of death in the world. And because so many people around the world have the disease, or are at risk for it, diabetes can be called the disease of the century. Diabetes has devastating effects on the health of people in the community and if diagnosed late, it can cause irreparable damage to vision, kidneys, heart, arteries and so on. Therefore, it...
متن کاملNew Approach for Classification and Learning Using Fuzzy Random Forest
In machine learning system different types of approaches, machine learning strategies have applications are related sentiment analysis, classification approaches, data mining etc. Irregular Forest has huge capability of turning into a prevalent method for future classifiers in light of the fact that its execution has been observed to be practically identical with troupe strategies sacking and b...
متن کاملInterpreting the Fuzzy Semantics of Natural-Language Spatial Relation Terms with the Fuzzy Random Forest Algorithm
Naïve Geography, intelligent geographical information systems (GIS), and spatial data mining especially from social media all rely on natural-language spatial relations (NLSR) terms to incorporate commonsense spatial knowledge into conventional GIS and to enhance the semantic interoperability of spatial information in social media data. Yet, the inherent fuzziness of NLSR terms makes them chall...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: International Journal of Approximate Reasoning
سال: 2010
ISSN: 0888-613X
DOI: 10.1016/j.ijar.2010.02.003